Data Science Analysis
ML model performance analysis with statistical insights
📱 Rendered Result
📄 Source Code
#import "mod.typ": *
#let data_scientist = user(name: [Dr. Chen Wei], title: [Data Scientist], avatar: rect(
fill: rgb("#2E86AB"),
radius: 4pt,
text(white, size: 8pt, weight: "bold")[CW],
))
#let ml_engineer = user(name: [Alex Zhang], title: [ML Engineer], avatar: rect(
fill: rgb("#A23B72"),
radius: 4pt,
text(white, size: 8pt, weight: "bold")[AZ],
))
#let analyst = user(name: [Sarah Liu], title: [Business Analyst], avatar: rect(
fill: rgb("#F18F01"),
radius: 4pt,
text(white, size: 8pt, weight: "bold")[SL],
))
#wechat.chat(
theme: "light",
layout: (
avatar-size: 35pt,
message-text-size: 12pt,
bubble-radius: 6pt,
row-gutter: 0.8em,
),
width: 500pt,
time[ML Model Review - Tuesday 10:00 AM],
message(left, data_scientist)[
A/B test results are in! Treatment group shows 47% lift:
Control: 3.2% conversion (n=10k)
Treatment: 4.7% conversion (n=10k)
Z-score: 7.73, p < 0.001 ✅
Statistically significant with high confidence!
],
message(right, ml_engineer)[
Nice! Here's the production model pipeline:
```python
def recommendation_score(user_features, item_features):
# Embedding lookup
user_vec = user_embeddings[user_id] # 128-dim
item_vec = item_embeddings[item_id] # 128-dim
# Feature engineering
combined = np.concatenate([
user_vec, item_vec,
[user_features['recency'], user_features['frequency']]
])
# Neural network inference
return model.predict(combined.reshape(1, -1))[0]
```
Deployed with 94.2% accuracy, 15ms latency! 🚀
],
message(left, analyst)[
ROI impact is massive:
#table(
columns: (auto, auto, auto),
stroke: 0.5pt + gray,
inset: 6pt,
[*Metric*], [*Before*], [*After*],
[CTR], [2.1%], [4.7%],
[Revenue/User], [\$47], [\$68],
[LTV], [\$340], [\$418],
)
Expected annual revenue increase: \$2.3M 📈
],
message(right, data_scientist)[
Perfect! Final model equation for docs:
$P("click") = sigma(W_u u + W_i i + b)$
Where $u, i$ are user/item embeddings learned via:
$L = -sum log sigma(y(W_u u + W_i i)) + lambda||W||^2$
Ready for production scaling! 🔬✨
],
)