Algorithm Optimization
Advanced algorithm design discussion with complexity analysis
📱 Rendered Result
📄 Source Code
#import "mod.typ": *
#let senior_dev = user(name: [Alex Chen], title: qqnt.title[Senior Developer], avatar: circle(
fill: gradient.radial(rgb("#FF6B6B"), rgb("#EE5A24")),
text(white, size: 8pt, weight: "bold")[AC],
))
#let algo_expert = user(name: [Dr. Wang], title: qqnt.title[Algorithm Specialist], avatar: circle(
fill: gradient.radial(rgb("#4834D4"), rgb("#686DE0")),
text(white, size: 8pt, weight: "bold")[DW],
))
#let performance_eng = user(
name: [Sarah Kim],
title: qqnt.title[Performance Engineer],
avatar: circle(fill: gradient.radial(rgb("#00D2D3"), rgb("#01A3A4")), text(
white,
size: 8pt,
weight: "bold",
)[SK]),
)
#qqnt.chat(
theme: (
inherit: "light",
bubble-left: rgb("#F0F8FF"),
bubble-right: rgb("#E8F5E8"),
text-right: rgb("#663476"),
),
layout: (
message-text-size: 12pt,
),
width: 600pt,
time[Algorithm Optimization Session - Wednesday 3:00 PM],
message(left, senior_dev)[
Our graph DFS is too slow for large datasets. Cache misses are the bottleneck:
```python
def dfs_traverse(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
for neighbor in graph[start]:
if neighbor not in visited:
dfs_traverse(graph, neighbor, visited) # Stack overflow risk!
```
Time: O(V + E), but terrible cache locality 😰
],
message(right, algo_expert)[
Try iterative approach with explicit stack for better cache performance:
```python
def optimized_dfs(graph, start):
stack = [start]
visited = set()
while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
stack.extend(neighbor for neighbor in graph[node]
if neighbor not in visited)
```
Same O(V + E) complexity but 3x faster due to locality! ðŸ§
],
message(left, performance_eng)[
Let's benchmark these approaches:
#table(
columns: (auto, auto, auto),
stroke: 0.5pt + gray,
inset: 6pt,
[*Algorithm*], [*Time (1M nodes)*], [*Memory*],
[Original DFS], [2.3s], [128MB],
[Iterative DFS], [1.8s], [96MB],
[Bit-optimized], [0.3s], [32MB],
)
Bit-optimized wins: 8x faster, 4x less memory! 🚀
],
message(right, algo_expert)[
Here's the space-optimized implementation:
```cpp
class BitGraph {
vector<bitset<MAX_NODES>> adj;
bitset<MAX_NODES> visited;
void traverse(int start) {
stack<int> s;
s.push(start);
while (!s.empty()) {
int node = s.top(); s.pop();
if (!visited[node]) {
visited[node] = 1;
for (int i = adj[node]._Find_first();
i < MAX_NODES;
i = adj[node]._Find_next(i)) {
if (!visited[i]) s.push(i);
}
}
}
}
};
```
Complexity: O(V + E) time, O(V/64) space! 🧠✨
],
)